THEORY OF THE HYDROMAGNETIC GENERATOR

Yu. B, Ponomarenko UDC 538.4

It is shown that in a homogencous medium, a magnctic field may generate helical motion in
a cylinder with constant angular and axial velocities. The generation problem is solved ex-
actly, and analytic expressions for the magnetic field are found. At high velocities the in-
crement of field growth is maximal when the ratio of the velocities is of the order of unity.
The maximum increment and frequency are of the order of the velocity to the two-thirds
power. The ficld distribution has the form of a surface wave. The field decay decrement
for departurc from the cylinder surface is proportional to the square root of its increment,

Concrete examples of self-excitation of a field are of interest in the theory of the hydromagnetic gen-
crator. Simple ficld forms (two-dimensional or axisymmetric) cannot be generated, and finding such ex-
amples is difficult, In [1] an exact solution of the generator problem is given. Below we offer an exact
solution in which, in contrast to [1], the magnetic ficld varies with time,

The motion in the example considered is axisymmetric. Such motion cannot generate an axisymmetric
field [2], but, as was shown in [3, 4], it can excite a nonsymmetric field,

The generation equations for a medium with magnetic viscodkty equal to unity are

div Il =0, all ;at - rol [V x 1] - AH (1)

where the velocity V is given,

In cylindrical coordinates r, ¢, z, let the velocity components be V.. = 0, V(r,, =rw(r), V, = v(r). Then
from Eq. (1), for a magnetic field proportional to exp(im¢ + ikz + pt), we obtain

DI 4 MDA imdl iy = ik = G (2)
LI, —2imH /r-=0 3)
Lil, 5 2imll, [ r* 4 rll,De = 0 4)
Lol .+ Dy = 0
D= dldr, L 41/ Ly« (A0 nDrD —m* /[ r? - ¢* (5)
G = i S = p e A w e me 4 kYY)

The solutions of Egs. (2)-(5) must be finite, continuous, and tend to zero as r —«, The field is gen-
erable if there exist eigenvalues p with a positive increment y = Rep. Generation is impossible if one of
the parameters m, k, v is equal to zcro [2, 5].

We will now consider the case where w, v arc constant for r < 1 and equal to zero for r >1, ¥rom
Egs. (3), (4) it is evident that the quantities H, =Hp+ iII(p satisfy the equations (L 7 2m/r?) H. = 0. The
finite single-valued solutions of these equations are
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Here and below 1, K, I, K, are modified Bessel functions with indices m, m + 1,

Al gryiTo(gy. ) . .
BaKy(sr) ) Ko (s), r>>1 T (6)
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The constants A, and B, are determined from the condition that
Hy, DHy + Vjie (H, + H) (7)

be continuous at r =1,

The continuity of the field and the quantities DH, + wHy, DH,, + vHy follows from Eqgs, (7), (2), (3). Thelatter
must be continuous; this follows from the continuity of the tangential electric field, and directly from Eqs.
(4), (5) after integration over r from 1—0to +0.

From Egs. (6), (7) we obtain the dispersion relation
Yyjo(R, — R) = R,R.  (Ry = qly' | I+ — sK+'/ Ky) (8)
The number p is an eigenvalue if it satisfies Eq. (8) and the condition | arg s| = 1/27r, necessary for
finiteness of the field (6).
For large q, s, in Eq. (8) the asymptotic relationships [6]
VainK@=e*"(140a /24 a,/22+..)= f(2),
V21 (2) = f(—2) (9)
(n'2%a, =T (m+n-+Y)/T(m—n+Yy), Jargz|< Yym)
may be used, from which follows
Ry = g+ s+ (amPxm - ) + 57+ g2 —57%) + 0 (g + 579 (10)
With accuracy to the largest terms in Egs. (8), (10), we have
imo(1/g 175 = {(g+ (largg, s|<1Yym) (11)
1t is sufficient to study Eqgs. (8), (11) at o = (1/2mw)1/ 3 = 0, since they become complex conjugates

for replacement of w, u, p by —w, —p, p.

At p = 0 (when a point of the surface r = ¢ = 1 moves along the spiral with constant field component
values), from Eq. (11) we obtain

s=q=aexp(Ysin) (x> + o) (12)

The field is generable if o > 2Kk2,

For small 6 = u/(2a?) the quantity p = (p +k?) =% +i6 is determined from Egs. (8), (10), (12) by the
perturbation method:

P = po — [0 / a+ 51,82/ g+ 0 (@Bl [1 +0(8%) -+ 0 (x?),

Po == exp (MYyin)
From this it follows that the increment y is maximum at p = —8/5a +O(oz‘1).

Tor large 6 (when 1/a « |6 | « a/m?), the value p is determined from Eq. (11) or the equivalent
equation 4 + 4p(p® +6%) = 6%(p? + 6%)2. According to Eq. (11), with increase in &% the increment y(8) =
a®Rep(6)—k? decreases. This is evident from the monotonicity of the functions

sin (Yan — @) tg 2 —
5% = !‘a'—l_.:i_r:Tp_’ Re p = gaq’ cos (/, t — )
/ (13)
3 _ sin(ha--q) =
ad = By P \0<,q>< 12)

To derive Eq. (13), we multiply Eq. (11) by (q—s)/(q + ) and write it in the form

T_—T,=6 (T4t =p+ id)

- +
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From this it follows that

T - T, =2 (T.T)2 2 =T, I'%

Taking T, =T $‘/26, we obtain

VTTi=17*—Y8 p=i(l+4 Yd*/T)
Substituting VT = « exp(—i) (¢ > 0) and separating real and imaginary parts, Eq. (13) may be ob-
tained.

We have considered above only the eigenvalue characterizing the field generated. A peculiarity of
Egs. (2)-(5), (7) is that the number of their eigenvalues is finite and nonconstant. With decrease in ve-
locities w, v eigenvalucs disappear, since the roots p of Eq. (8) depart from the curve |arg s| < ‘/27.' to
neighboring ones through the section p = -k2, At low velocities there are no cigenvalues.

To determine the disappearing eigenvalucs and the corresponding frequencies in the case q = s it is
convenient, using the equation [6]

'R —IN -1z, Vwemliz =T, K+mKiz— —Kx (14)

to transform Eq. (8) to the form

v IN, 1iw Nt R — 17 R) —im (IKY s — =Vam (J? - idYY ix {15)

where J, Y are Bessel functions of the first and second type with argument x = is.

An eigenvalue disappears if the corresponding root x moves from the upper semiplanc into the lower
across the positive semiaxis, Tor positive x it follows from Iq, (15) that

X O UYY 2 2 () = 0, mo = a2 | J (16)

The positive nulls x, of the function X satisfy the incqualitics

P ’

0 2oy Zh" Z Dol T eZay - Jg Lyl Ly <o (17)

since the sign of X is different at the boundaries of each interval for x,. The latter may be verified by ex-
pansion of X for x — 0 and from the inequalities (17) for the nulls j, j', y, y' of the functions J, J', Y, Y'.

Trom Egs. (16), (17) and the asymptotic {6]
FlLoaaw (0 exp i = Yam - Y,a), Jn o= (i Yen — 1)
it develops that
£y = V(e bom— 1), ma, — {(—1)"r,? (n .~ m)

For m =1 the first roots ~ 0.6, 2.9, 4.6, and the frequencies =~ —1,5, 6.6, —22,5, For m = 2, 3, 4 the first
roots =~ 1,8, 2.8, 3.8 and the frequencies =~ —17,7, —18, —32,

For frequencies close to wy from Eq. (15) we can find the correction to x, and verify that the eigen-
values disappear with decrease in | w

From Egs. (16), (17) it follows that w,(—1)P > 0, In accordance with the remarks made about Eq.
{11) above, for disappearing cigenvalues p in the upper semiplane wp(—1)? < 0, Therefore, with increase
in «w from zero, the first eigenvalue appears in the upper semiplane, the second in the lower, ete. It may
be assumed that Eq. (12) corresponds to the first cigenvalue, '

In Eq. (1) with initial conditions, for Laplace transform of the magnetic field H, Egs. (3)-(5) arc ob-
tained, to the left side of which have been added the corresponding components of the initial field h. Instead
of Eq. (6) we have
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Hy= Asle (@) 1+ (@) + K (0 e () L @) 8 +
, ’ (18)
+ L @) \hs @ K2 (DB (hp = hy ke, 0r <Y

The expression for the field at r > 1 is obtained from Eq. (18) by the replacement A - B, q —s, 0 —1,
1 — o, and in the first term I—K.

After determination of A;, B, from Eq. (7), each component of Eq. (18) is presented in the form H =
Hy(p, T)/W(p), where W = 0 when Eq. (8) is satisfied, From this and the rotation integral we obtain

Ht,r) = Derdl, j W oottt j @niwydp

where the sum is taken over the eigenvalues, and the integral is over the curve bounding the section [arg s,

ql = Vzw. For large t the sum of the terms describing the generated field will be the greatest, If in the semi-
plane Rep = —k? there are no eigenvalues, then the integral term will be greatest, equal to O[t™In exp(—k)]

for t — «, From this it is evident that generation is impossible if there are no eigenvalues,

The component H, is found from Egs. (2), (18). Using Eq. (14), we can find

H. =1 @035 - oy, — oK @] + K (@) \ T 988 + 1 (an) \ K (62)8 d8 (0 r <)

The expression for r > 1 is obtained by the replacement g —s, 0 —1,1 —, A ——B, ¢ = hy(1) —~ —¢
and in the first term I =K,

The solution of the generator problem considered here may be generalized to the case where the
velocities «, v and the conductivity are arbitrary piecewise-constant functions of the radius, An exact dis-
persion relation can be written for the case differing from the above by a discontinuity in conductivity at
r =Ty = 1 (the cases of the boundaries of a conductor with a semiconductor and a vacuum are the limiting
ones).

According to Eqgs. (6), (9), at large s the magnetic field decays exponentially with departure from the
cylinder r = 1; therefore inhomogeneity of conductivity (which is dependent not only on r) changes the eigen-
value of the homogeneous problem by an exponentially small value, if the arca of inhomogeneous conduc-
tivity is removed from the cylinder by a minimum distance > 1/Res, In the problem with a discontinuity
in conductivity, the change in the eigenvalue is proportional to exp(—2s|ry —1}). In the example considered,
inhomogeneity in conductivity is not significant for generation.

With increase in one of the dimensions of motion, difficulty in field generation is to be expected. In
the limiting case of plane motion (when the velocity is dependent only on the Cartesian coordinate x and
Vx = 0), generation is impossible.

it follows from considerations of continuity that generation'remains possible for replacement of the
moving cylinder by a long torus and smoothing of the velocity discontinuities. As in the examples of [3, 4],
this confirms the possibility of generation of an axisymmetric-motion field under astrophysical conditions.
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